Phenotypic Rescue of a Peripheral Clock Genetic Defect via SCN Hierarchical Dominance

نویسندگان

  • Matthew P. Pando
  • David Morse
  • Nicolas Cermakian
  • Paolo Sassone-Corsi
چکیده

The mammalian circadian system contains both central and peripheral oscillators. To understand the communication pathways between them, we have studied the rhythmic behavior of mouse embryo fibroblasts (MEFs) surgically implanted in mice of different genotypes. MEFs from Per1(-/-) mice have a much shorter period in culture than do tissues in the intact animal. When implanted back into mice, however, the Per1(-/-) MEF take on the rhythmic characteristics of the host. A functioning clock is required for oscillations in the target tissues, as arrhythmic clock(c/c) MEFs remain arrhythmic in implants. These results demonstrate that SCN hierarchical dominance can compensate for severe intrinsic genetic defects in peripheral clocks, but cannot induce rhythmicity in clock-defective tissues.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Brain-Specific Rescue of Clock Reveals System-Driven Transcriptional Rhythms in Peripheral Tissue

The circadian regulatory network is organized in a hierarchical fashion, with a central oscillator in the suprachiasmatic nuclei (SCN) orchestrating circadian oscillations in peripheral tissues. The nature of the relationship between central and peripheral oscillators, however, is poorly understood. We used the tetOFF expression system to specifically restore Clock function in the brains of Clo...

متن کامل

NPAS2 Compensates for Loss of CLOCK in Peripheral Circadian Oscillators.

Heterodimers of CLOCK and BMAL1 are the major transcriptional activators of the mammalian circadian clock. Because the paralog NPAS2 can substitute for CLOCK in the suprachiasmatic nucleus (SCN), the master circadian pacemaker, CLOCK-deficient mice maintain circadian rhythms in behavior and in tissues in vivo. However, when isolated from the SCN, CLOCK-deficient peripheral tissues are reportedl...

متن کامل

Light Stimulates the Mouse Adrenal through a Retinohypothalamic Pathway Independent of an Effect on the Clock in the Suprachiasmatic Nucleus

The brain's master circadian pacemaker resides within the hypothalamic suprachiasmatic nucleus (SCN). SCN clock neurons are entrained to the day/night cycle via the retinohypothalamic tract and the SCN provides temporal information to the central nervous system and to peripheral organs that function as secondary oscillators. The SCN clock-cell network is thought to be the hypothalamic link betw...

متن کامل

Peripheral circadian oscillators require CLOCK

In mammals, the circadian system is hierarchical — a brain pacemaker located within the suprachiasmatic nucleus (SCN) is responsible for regulating locomotor activity rhythms and for synchronizing peripheral oscillators [1,2]. Recent genetic evidence in mice indicates that the bHLH transcription factors CLOCK and NPAS2 have partially redundant functions within the SCN [3,4]. To further examine ...

متن کامل

Circadian rhythms have broad implications for understanding brain and behavior.

Circadian rhythms are generated by an endogenously organized timing system that drives daily rhythms in behavior, physiology and metabolism. In mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus is the locus of a master circadian clock. The SCN is synchronized to environmental changes in the light:dark cycle by direct, monosynaptic innervation via the retino-hypothalamic tract. In t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 110  شماره 

صفحات  -

تاریخ انتشار 2002